基础不等式
这里将会持续添加一些基础的不等式定理、题目。
Basic Inequalities
Theorem1. 1
xy≥2xy. x,y∈R+
Proof
(x−y)2x2−2xy+y2x2+2xy+y2(x+y)2x+y⇔xyEqualitiy occurs if and only if x=y.≥0≥0≥4xy≥4xy≥2xy≤2x+y
Exercise1. 1
Use Theorem1. 1 to solve this problem.
Let 0<x<4 . Prove the inequality:
x(8−2x)≤8 .
Solution
2x+(8−2x)=8x(8−2x)=21[2x(8−2x)]≤21(22x−8−2x)2=8
Exercise1.2
Let n∈R . Prove the inequality:
1+221+321+...+n21≤2 .
Solution
It’s easy to know:
a×a1≤a×(a−1)1.
So
1+221+321+...+n21<1+1×21+2×31+...+(n−1)×n1=1+11−21+21−31+...+n−11−n1=2−n1<2